

NTE988 Integrated Circuit Positive 3 Terminal Voltage Regulator, 100mA

Description:

The NTE988 is a 3-terminal positive voltage regulator in a TO92 type package and employs internal current-limiting and thermal shutdown, making it essentially indestructible. If adequate heat sinking is provided, this device can deliver up to 100mA output current. The NTE988 is intended for use as a fixed voltage regulator in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, this device can be used with power pass elements to make a high current voltage regulator. When used as a Zener diode/resistor combination replacement, the NTE988 offers an effective output impedance improvement of typically two orders of magnitude, along with lower quiescent current and lower noise.

Features:

- Output Current up to 100mA
- No External Components
- Internal Thermal Overload Protection
- Internal Short Circuit Current–Limiting
- Output Voltage Tolerance of ±5% over the Temperature Range

Absolute Maximum Ratings:

Input Voltage, V _{IN}	35V
Internal Power Dissipation, P _D	Internally Limited
Operating Junction Temperature Range, T _A	0°C to +125°C
Storage Temperature Range, T _{stg}	–65°C to +150°C
Lead Temperature (Soldering, 10 sec), T _L	+265°C

<u>Electrical Characteristics</u>: $(0^{\circ} \le T_J \le +125^{\circ}C, V_{IN} = 12V, I_O = 40mA, C_{IN} = 0.33\mu$ F, C_O = 0.1 μ F, Note 1 unless otherwise specified)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Output Voltage	V _O	$T_J = +25^{\circ}C$		5.95	6.20	6.45	V
Line Regulation	V _{R(LINE)}	T _J = +25°C	$8.5V \leq V_I \leq 20V$	-	65	175	mV
			$9.0V \leq V_I \leq 20V$	1	55	125	mV

Note 1. The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperatures as indicated at the initiation of the tests.

<u>Electrical Characteristics (Cont'd)</u>: $(0^{\circ} \le T_J \le +125^{\circ}C, V_{IN} = 12V, I_O = 40mA, C_{IN} = 0.33\mu F, C_O = 0.1\mu F, Note 1 unless otherwise specified)$

Parameter	Symbol	Test Conditions			Тур	Max	Unit
Load Regulation	V _{R(LOAD)}	T _J = +25°C	$1\text{mA} \le I_O \le 100\text{mA}$	_	13	80	mV
			$1\text{mA} \le I_O \le 40\text{mA}$	_	6	40	mV
Output Voltage (Note 2)	V _O	$8.5V \le V_I \le 20V$	$1\text{mA} \le I_O \le 40\text{mA}$	5.9	_	6.5	V
		$8.5V \le V_I \le V_{Max}$	$1\text{mA} \le I_O \le 70\text{mA}$	5.9	_	6.5	V
Quiescent Current	l _Q		•	_	2.0	5.5	mA
Quiescent Current Change With Line	Δl _Q	$8.0V \le V_I \le 20V$		_	_	1.5	mA
With Load		$1mA \le I_O \le 40mA$			—	0.1	mA
Noise	N _O	$T_A = +25^{\circ}C$, $10Hz \le f \le 100kHz$			50	_	μV
Ripple Rejection	$\Delta V_{l} / \Delta V_{O}$	$f = 120Hz, \ 10V \le V_I \le 20V, \ T_J = +25^{\circ}C$			46	_	dB
Dropout Voltage	V _{DO}	T _J = +25°C		_	1.7	_	V
Peak Output/Output Short Circuit Current	I _{pk} /I _{OS}	T _J = +25°C		-	140	-	mA
Average Temperature Coefficient of Output Voltage	$\Delta V_O / \Delta T$	I _O = 5mA		_	-0.75	_	mV/°C

Note 1. The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperatures as indicated at the initiation of the tests.

Note 2. Power Dissipation ≤ 0.75 W.

