NTE2950 MOSFET N-Channel, Enhancement Mode High Speed Switch TO-262 Type Package #### **Features:** - Low R_{DSON} Reduces Losses - Low Gate Charge Improves the Switching Performance - Improved Diode Recovery Improves Switching & EMI Performance - 30V Gate Voltage Rating Improves Robustness - Fully Characterized Avalanche SOA #### **Applications** - Motion Control Applications - High Efficiency Synchronous Rectification in SMPS - Uninterruptible Power Supply - Hard Switched and High Frequency Circuits # Absolute Maximum Ratings: Continuous Drain Current (Voc = 10V) | Continuous Diam Current (VGS = 10V), ID | |--| | T _C = +25°C (Note 1) | | $T_C = +25^{\circ}C \text{ (Note 1)}$ | | Pulsed Drain Current (Note 2), I _{DM} | | Maximum Power Dissipation ($T_C = +25^{\circ}C$), P_D | | Linear Derating Factor | | Gate-to-Source Voltage, V _{GS} ±30V | | Single Pulse Avalanche Energy (Thermally Limited, Note 3), E _{AS} | | Operating Junction Temperature Range, Topr | | Storage Temperature Range, T _{STG} –55° to +175°C | | Lead Temperature (During soldering, 10 sec. max, 1.6mm from case), T ₁ +300°C | | Thermal Resistance, Junction-to-Case (Note 4, Note 5), R _{thJC} | | Thermal Resistance, Junction-to-Ambient (Note 4), R _{thJA} | | Note 1. Calculated continuous current based on maximum allowable junction temperature. Package | - Note 1. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A - Note 2. Repetitive rating: pulse width limited by max. junction temperature. - Note 3. Limited by T_{Jmax} , starting $T_J = +25^{\circ}C$, L = 0.096mH, $R_G = 25\Omega$, $I_{AS} = 50A$, $V_{GS} = 10V$. Device not recommended for use above this value. - Note 4. Thermal resistance is measured at T_{.1} approximately +90°C. - Note 5. R_{thJC} (end of life) = 0.65°C/W. This is the maximum measured value after 1000 temperature cycles from -55° to +15°C and is accounted for by the physical wearout of the die attach medium. ### **Electrical Characteristics:** | Parameter | Symbol | Test Conditions | | Min | Тур | Max | Unit | |--|------------------------------------|--|--------------------------|-----|--------|-----------|----------| | Static (T _J = +25°C unless otherwise spe | ecified) | | | 1 | | | <u>I</u> | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0V, I_D = 250 \mu A$ | | 150 | _ | _ | V | | Breakdown Voltage Temp. Coefficient | $\Delta V_{(BR)DSS}/$ ΔT_J | Reference to +25°C, I _D = 1mA,
Note 2 | | _ | 150 | _ | mV/°C | | Static Drain-to-Source On-Resistance | R _{DS(on)} | V _{GS} = 10V, I _D = 33A, Note 6 | | _ | 12 | 15 | mΩ | | Gate Threshold Voltage | V _{GS(th)} | $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ | | 3.0 | - | 5.0 | V | | Drain-to-Source Leakage Current | I _{DSS} | V _{DS} = 150V,
V _{GS} = 0V | T _{.1} = +125°C | - | _
_ | 20
1.0 | μA
mA | | Gate-to-Source Leakage Current | I _{GSS} | V _{GS} = ±20V | 1 0 | _ | _ | ±100 | nA | | Internal Gate Resistance | R _{G(int)} | | | _ | 0.8 | _ | Ω | | Dynamic ($T_J = +25^{\circ}C$ unless otherwise | | | | | | | | | Forward Transconductance | gfs | $V_{DS} = 25V, I_{D} = 50A$ | | 130 | _ | _ | S | | Total Gate Charge | Q_{g} | I _D = 50A, V _{DS} = 75V,
V _{GS} = 10V, Note 6 | | _ | 71 | 110 | nC | | Gate-to-Source Charge | Q _{gs} | | | _ | 24 | _ | nC | | Gate-to-Drain ("Miller") Charge | Q _{gd} | | | _ | 21 | - | nC | | Turn-On Delay Time | t _{d(on)} | V_{DD} = 98V, I_{D} = 50A, R_{G} = 2.5 Ω , V_{GS} = 10V, Note 6 | | _ | 18 | _ | ns | | Rise Time | t _r | | | _ | 60 | _ | ns | | Turn-Off Delay Time | t _{d(off)} | | | _ | 25 | _ | ns | | Fall Time | t _f | | | _ | 35 | _ | ns | | Input Capacitance | C _{iss} | $V_{GS} = 0V$, $V_{DS} = 50V$, $f = 1MHz$ | | _ | 4460 | - | pF | | Output Capacitance | C _{oss} | | | _ | 390 | - | pF | | Reverse Transfer Capacitance | C _{rss} | | | _ | 82 | _ | pF | | Diode Characteristics | | | | | | | | | Continuous Source Current (Body Diode) | I _S | Note 1 | | _ | _ | 85 | Α | | Pulsed Source Current (Body Diode) | I _{SM} | Note 2 | | _ | - | 330 | Α | | Diode Forward Voltage | V_{SD} | $I_S = 50A$, $V_{GS} = 0V$, $T_J = +25$ °C, Note 6 | | _ | - | 1.3 | V | | Reverse Recovery Time | t _{rr} | I _D = 50A, V _R = 128V,
di/dt = 100A/μs, Note 6 | | _ | 89 | 130 | ns | | Reverse Recovery Charge | Q _{rr} | | | _ | 300 | 450 | nC | | Reverse Recovery Current | I _{RRM} | | | _ | 6.5 | _ | Α | | Forward Turn-On Time | ton | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) | | | | | | Note 1. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A Note 2. Repetitive rating: pulse width limited by max. junction temperature. Note 6. Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.