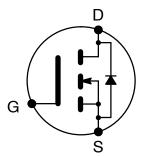


NTE2950 MOSFET N-Channel, Enhancement Mode High Speed Switch TO-262 Type Package

Features:

- Low R_{DSON} Reduces Losses
- Low Gate Charge Improves the Switching Performance
- Improved Diode Recovery Improves Switching & EMI Performance
- 30V Gate Voltage Rating Improves Robustness
- Fully Characterized Avalanche SOA

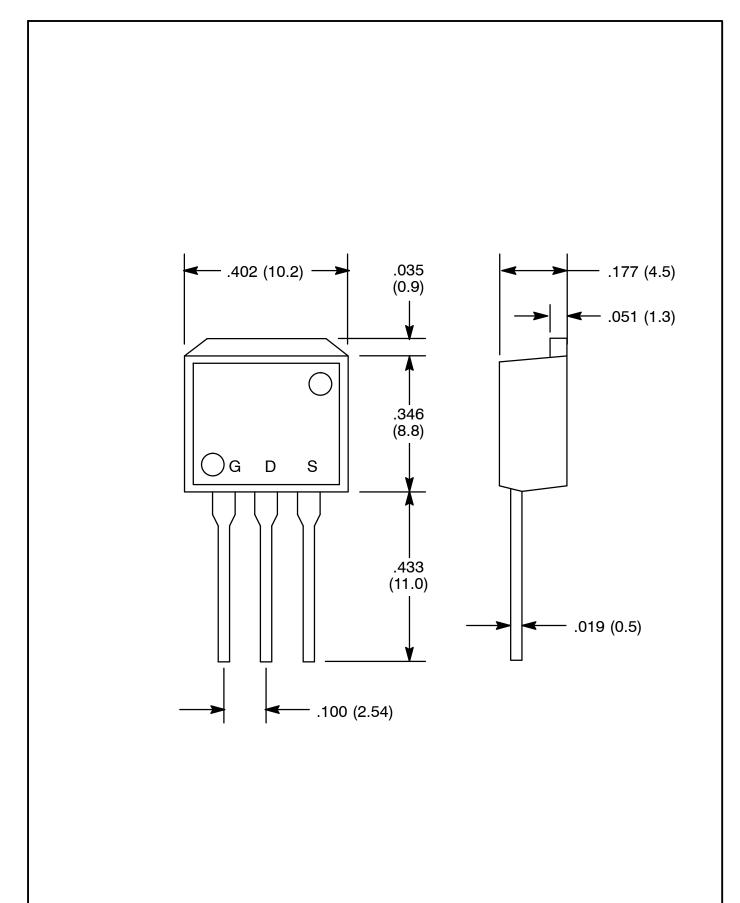

Applications

- Motion Control Applications
- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- Hard Switched and High Frequency Circuits

Absolute Maximum Ratings: Continuous Drain Current (Voc = 10V)

Continuous Diam Current (VGS = 10V), ID
T _C = +25°C (Note 1)
$T_C = +25^{\circ}C \text{ (Note 1)}$
Pulsed Drain Current (Note 2), I _{DM}
Maximum Power Dissipation ($T_C = +25^{\circ}C$), P_D
Linear Derating Factor
Gate-to-Source Voltage, V _{GS} ±30V
Single Pulse Avalanche Energy (Thermally Limited, Note 3), E _{AS}
Operating Junction Temperature Range, Topr
Storage Temperature Range, T _{STG} –55° to +175°C
Lead Temperature (During soldering, 10 sec. max, 1.6mm from case), T ₁ +300°C
Thermal Resistance, Junction-to-Case (Note 4, Note 5), R _{thJC}
Thermal Resistance, Junction-to-Ambient (Note 4), R _{thJA}
Note 1. Calculated continuous current based on maximum allowable junction temperature. Package

- Note 1. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A
- Note 2. Repetitive rating: pulse width limited by max. junction temperature.
- Note 3. Limited by T_{Jmax} , starting $T_J = +25^{\circ}C$, L = 0.096mH, $R_G = 25\Omega$, $I_{AS} = 50A$, $V_{GS} = 10V$. Device not recommended for use above this value.
- Note 4. Thermal resistance is measured at T_{.1} approximately +90°C.
- Note 5. R_{thJC} (end of life) = 0.65°C/W. This is the maximum measured value after 1000 temperature cycles from -55° to +15°C and is accounted for by the physical wearout of the die attach medium.


Electrical Characteristics:

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Static (T _J = +25°C unless otherwise spe	ecified)			1			<u>I</u>
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = 250 \mu A$		150	_	_	V
Breakdown Voltage Temp. Coefficient	$\Delta V_{(BR)DSS}/$ ΔT_J	Reference to +25°C, I _D = 1mA, Note 2		_	150	_	mV/°C
Static Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10V, I _D = 33A, Note 6		_	12	15	mΩ
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$		3.0	-	5.0	V
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 150V, V _{GS} = 0V	T _{.1} = +125°C	-	_ _	20 1.0	μA mA
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = ±20V	1 0	_	_	±100	nA
Internal Gate Resistance	R _{G(int)}			_	0.8	_	Ω
Dynamic ($T_J = +25^{\circ}C$ unless otherwise							
Forward Transconductance	gfs	$V_{DS} = 25V, I_{D} = 50A$		130	_	_	S
Total Gate Charge	Q_{g}	I _D = 50A, V _{DS} = 75V, V _{GS} = 10V, Note 6		_	71	110	nC
Gate-to-Source Charge	Q _{gs}			_	24	_	nC
Gate-to-Drain ("Miller") Charge	Q _{gd}			_	21	-	nC
Turn-On Delay Time	t _{d(on)}	V_{DD} = 98V, I_{D} = 50A, R_{G} = 2.5 Ω , V_{GS} = 10V, Note 6		_	18	_	ns
Rise Time	t _r			_	60	_	ns
Turn-Off Delay Time	t _{d(off)}			_	25	_	ns
Fall Time	t _f			_	35	_	ns
Input Capacitance	C _{iss}	$V_{GS} = 0V$, $V_{DS} = 50V$, $f = 1MHz$		_	4460	-	pF
Output Capacitance	C _{oss}			_	390	-	pF
Reverse Transfer Capacitance	C _{rss}			_	82	_	pF
Diode Characteristics							
Continuous Source Current (Body Diode)	I _S	Note 1		_	_	85	Α
Pulsed Source Current (Body Diode)	I _{SM}	Note 2		_	-	330	Α
Diode Forward Voltage	V_{SD}	$I_S = 50A$, $V_{GS} = 0V$, $T_J = +25$ °C, Note 6		_	-	1.3	V
Reverse Recovery Time	t _{rr}	I _D = 50A, V _R = 128V, di/dt = 100A/μs, Note 6		_	89	130	ns
Reverse Recovery Charge	Q _{rr}			_	300	450	nC
Reverse Recovery Current	I _{RRM}			_	6.5	_	Α
Forward Turn-On Time	ton	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

Note 1. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A

Note 2. Repetitive rating: pulse width limited by max. junction temperature.

Note 6. Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

